Directed Energy for Interstellar Study Completed Technology Project (2016 - 2018) ## **Project Introduction** We propose to expand our investigations started in our NIAC Phase I of using directed energy to allow the achievement of relativistic flight to pave the way to the first interstellar missions. All of the current conventional propulsion systems are incapable of reaching the high speeds necessary to enable interstellar flight. Directed energy offers a path forward that, while difficult, is feasible. It is not an easy path and it does have many milestones to cross in order to get to the point of achieving the speeds needed. Along the roadmap we propose are important and useful waypoints that both allow testing and feed back to the larger design but are also useful for many applications. The consequences of this program are truly transformative not only for achieving relativistic flight for small probes but also for larger spacecraft at lower speeds suitable for rapid interplanetary travel. The Phase II work will consist of refining our roadmap and building and testing a small phased array prototype to test many of the concepts developed in the Phase I. We will also further our work on the wafer scale spacecraft design including work on the critical integrated laser communications system. We will also explore and test the inverse mode of using the array for reception which is critical to receiving the laser communications from the spacecraft. ## **Anticipated Benefits** All of the current conventional propulsion systems are incapable of reaching the high speeds necessary to enable interstellar flight. Directed energy offers a path forward that, while difficult, is feasible. It is not an easy path and it does have many milestones to cross in order to get to the point of achieving the speeds needed. The consequences of this program are truly transformative not only for achieving relativistic flight for small probes but also for larger spacecraft at lower speeds suitable for rapid interplanetary travel. Artist rendering of the Directed Energy Interstellar Study. Credits: P. Lubin ## **Table of Contents** | Project Introduction | | | | |-------------------------------|---|--|--| | Anticipated Benefits | | | | | Primary U.S. Work Locations | | | | | and Key Partners | 2 | | | | Organizational Responsibility | | | | | Project Management | | | | | Project Transitions | | | | | Technology Maturity (TRL) | | | | | Technology Areas | | | | | Target Destination | | | | | Images | 4 | | | | Links | 4 | | | # Directed Energy for Interstellar Study Completed Technology Project (2016 - 2018) ## **Primary U.S. Work Locations and Key Partners** # Organizational Responsibility # Responsible Mission Directorate: Space Technology Mission Directorate (STMD) #### **Lead Organization:** University of California-Santa Barbara (UCSB) #### **Responsible Program:** NASA Innovative Advanced Concepts # **Project Management** #### **Program Director:** Jason E Derleth #### **Program Manager:** Eric A Eberly #### **Principal Investigator:** Philip M Lubin #### **Co-Investigators:** Mark K Pryor John J Bowers Gary D Hughes Forrest D Brewer Peter R Meinhold # Directed Energy for Interstellar Study | Organizations
Performing Work | Role | Туре | Location | |---|----------------------------|--|-----------------------------------| | University of
California-Santa
Barbara(UCSB) | Lead
Organization | Academia Asian American Native American Pacific Islander (AANAPISI), Hispanic Serving Institutions (HSI) | Santa
Barbara,
California | | California Polytechnic State University-San Luis Obispo(Cal Poly) | Supporting
Organization | Academia | San Luis
Obispo,
California | | Jet Propulsion Laboratory(JPL) | Supporting
Organization | NASA Center | Pasadena,
California | | Massachusetts Institute of Technology Lincoln Laboratory(MIT-LL) | Supporting
Organization | R&D Center | Lexington,
Massachusetts | | Tethers Unlimited Inc | Supporting
Organization | Industry | | | University of
California-
Berkeley(Berkeley) | Supporting
Organization | Academia | Berkeley,
California | ## **Primary U.S. Work Locations** California ## **Project Transitions** ## **Technology Areas** #### **Primary:** - TX01 Propulsion Systems □ TX01.4 Advanced Propulsion □ TX01.4.4 Other Advanced Propulsion Approaches # Target Destination Outside the Solar System **NASA Innovative Advanced Concepts** # Directed Energy for Interstellar Study Completed Technology Project (2016 - 2018) May 2018: Closed out Closeout Link: https://www.nasa.gov/feature/directed-energy-interstellar-study ## **Images** Project Image Artist rendering of the Directed Energy Interstellar Study. Credits: P. Lubin (https://techport.nasa.gov/imag e/102095) ## Links NASA.gov Feature Article (https://www.nasa.gov/feature/directed-energy-interstellar-study)